Un autómata celular (A.C.) es un modelo matemático para un sistema dinámico que evoluciona en pasos discretos. Es adecuado para modelar sistemas naturales que puedan ser descritos como una colección masiva de objetos simples que interactúen localmente unos con otros.
Son sistemas descubiertos dentro del campo de la física computacional por John von Neumann en la década de 1950. La teoría de los autómatas celulares se inicia con su precursor John von Neumann a finales de la década de 1940 con su libro Theory of Self-reproducing Automata (editado y completado por A. W. Burks).
Aunque John von Neumann puso en práctica los AA.CC., estos fueron concebidos en los años 40 por Konrad Zuse y Stanislaw Ulam. Zuse pensó en los “espacios de cómputo” (computing spaces), como modelos discretos de sistemas físicos. Las contribuciones de Ulam vinieron al final de los 40, poco después de haber inventado con Nicholas Metropolis el Método de Montecarlo.
No existe una definición formal y matemática aceptada de Autómata Celular; sin embargo, se puede describir a un A.C. como una tupla, es decir, un conjunto ordenado de objetos caracterizado por los siguientes componentes:
- Una rejilla o cuadriculado (lattice) de enteros (conjunto ) infinitamente extendida, y con dimensión . Cada celda de la cuadrícula se conoce como célula.
- Cada célula puede tomar un valor en a partir de un conjunto finito de estados .
- Cada célula, además, se caracteriza por su vecindad, un conjunto finito de células en las cercanías de la misma.
- De acuerdo con esto, se aplica a todas las células de la cuadrícula una función de transición ( ) que toma como argumentos los valores de la célula en cuestión y los valores de sus vecinos, y regresa el nuevo valor que la célula tendrá en la siguiente etapa de tiempo. Esta función se aplica, como ya se dijo, de forma homogénea a todas las células, por cada paso discreto de tiempo.
Condiciones de frontera
Topología del autómata celular de 2D plegado en 3D para el caso de frontera periódica. |
Dentro del ámbito de los A.C., se pueden implementar numerosas condiciones de frontera, en función de lo que el problema real requiera para su modelado. Por ejemplo:
- Frontera abierta. Se considera que fuera de la lattice residen células, todas con un valor fijo. En el caso particular del juego de la vida y de otros A.C. con dos estados en su conjunto , una frontera se dice fría si las células fuera de la frontera se consideran muertas, y caliente si se consideran vivas.
- Frontera periódica. Se considera a la lattice como si sus extremos se tocaran. En una lattice de dimensión 1, esto puede visualizarse en dos dimensiones como una circunferencia. En dimensión 2, la lattice podría visualizarse en tres dimensiones como un toroide.
- Frontera reflectora. Se considera que las células fuera de la lattice "reflejan" los valores de aquellas dentro de la lattice. Así, una célula que estuviera junto al borde de la lattice (fuera de ella) tomaría como valor el de la célula que esté junto al borde de la lattice, dentro de ella.
- Sin frontera. Haciendo uso de implementaciones que hagan crecer dinámicamente el uso de memoria de la lattice implementada, se puede asumir que cada vez que las células deben interactuar con células fuera de la lattice, esta se hace más grande para dar cabida a estas interacciones. Obviamente, existe un límite (impuesto por la memoria disponible) para esta condición. Es muy importante no confundir esta condición de frontera con la definición original de A.C. cuya lattice es inicialmente infinita. En el caso de un A.C. sin frontera, la lattice comienza con un tamaño definido y finito, y conforme se requiera va creciendo en el tiempo, lo cual no lo hace necesariamente un modelo más cercano a la realidad, pues si se inicializara la lattice aleatoriamente, con esta condición sólo se pueden inicializar las células dentro de la lattice inicial finita, mientras que en el caso de la definición original, en teoría todas las células de la lattice infinita deberían ser inicializadas.
Variaciones
Los A.C. pueden variar en alguna de las características antes mencionadas, derivando en autómatas celulares no estándar.Por ejemplo, un A.C. estándar tiene una cuadrícula donde se asume que las células son cuadros; es decir, que la retícula tiene una geometría cuadrada. Esto no es necesariamente un requisito, y se puede variar el A.C. para presentar una geometría triangular o hexagonal (en A.C. de 2 dimensiones, el cuadrado, el triángulo y el hexágono son las únicas figuras geométricas que llenan el plano).
También puede variarse el conjunto de estados que cada célula puede tomar, la función de transición de forma que ya no sea homogénea, utilizar elementos estocásticos (aleatoriedad) en (lo que se conoce como A.C. probabilístico), variar las vecindades de cada célula, etc.
Historia
La historia de los autómatas celulares puede ser clasificada en tres etapas asociadas a los nombres de los científicos que en cada momento marcaron un punto de inflexión en el desarrollo de la teoría: la era de Von Neumann, la era de Martin Gardner y la era de Stephen Wolfram.Era de Von Neumann
La primera etapa la inicia von Neumann, quien una vez terminada su participación en el desarrollo y terminación de la primera computadora ENIAC tenía en mente desarrollar una máquina con la capacidad de construir a partir de sí misma otras máquinas (auto-reproducción) y soportar comportamiento complejo. Con la ayuda de su amigo Stanislaw Ulam, von Neumann implementa la teoría de los autómatas celulares en un vector de dos dimensiones (donde representa el conjunto de los enteros). El vector es llamado el espacio de evoluciones y cada una de las posiciones (llamadas células) en el vector toma un valor del conjunto de estados . La función de transición que determina el comportamiento del autómata celular utiliza la vecindad de von Neumann, que consiste en un elemento central (llamada célula central) y sus vecinos que son las células , , y (es decir, la célula en cuestión y sus células vecinas más próximas, arriba, abajo, izquierda y derecha, respectivamente).Era de John Horton Conway
En 1970, John Horton Conway dio a conocer el autómata celular que probablemente sea el más conocido: el Juego de la vida (Life), publicado por Martin Gardner en su columna Mathematical Games en la revista Scientific American. Life ocupa una cuadrícula (lattice bidimensional) donde se coloca al inicio un patrón de células "vivas" o "muertas". La vecindad para cada célula son los ocho: los vecinos formados por la vecindad de Von Neumann y las cuatro células de las dos diagonales (esta vecindad se conoce como vecindad de Moore). De manera repetida, se aplican simultáneamente sobre todas las células de la cuadrícula las siguientes 3 reglas:- Nacimiento: se reemplaza una célula muerta por una viva si dicha célula tiene exactamente 3 vecinos vivos.
- Muerte: se reemplaza una célula viva por una muerta si dicha célula no tiene más de 1 vecino vivo (muerte por aislamiento) o si tiene más de 3 vecinos vivos (muerte por sobrepoblación).
- Supervivencia: una célula viva permanecerá en ese estado si tiene 2 o 3 vecinos vivos.
Era de Stephen Wolfram
Stephen Wolfram ha realizado numerosas investigaciones sobre el comportamiento cualitativo de los A.C. Con base en su trabajo sobre AC unidimensionales, con dos o tres estados, sobre configuraciones periódicas que se presentan en el A.C., observó sus evoluciones para configuraciones iniciales aleatorias. Así, dada una regla, el A.C. exhibe diferentes comportamientos para diferentes condiciones iniciales.De esta manera, Wolfram clasificó el comportamiento cualitativo de los A.C. unidimensionales. De acuerdo con esto, un AC pertenece a una de las siguientes clases:
- Clase I. La evolución lleva a una configuración estable y homogénea, es decir, todas las células terminan por llegar al mismo valor.
- Clase II. La evolución lleva a un conjunto de estructuras simples que son estables o periódicas.
- Clase III. La evolución lleva a un patrón caótico.
- Clase IV. La evolución lleva a estructuras aisladas que muestran un comportamiento complejo (es decir, ni completamente caótico, ni completamente ordenado, sino en la línea entre uno y otro, este suele ser el tipo de comportamiento más interesante que un sistema dinámico puede presentar).
Aplicaciones
El caparazón de Conus textile muestra un patrón caracterizable en términos de autómatas celulares. |
Las características de los autómatas celulares harán que dichos modelos sean discretos en tiempo, espacio o ambos (dependiendo de la variante de la definición de A.C. que se use). Algunos ejemplos de áreas en donde se utilizan los autómatas celulares son:
- Modelado del flujo de tráfico y de peatones.
- Modelado de fluidos (gases o líquidos).
- Modelado de la evolución de células o virus como el VIH.
- Modelado de procesos de percolación.
Ejemplos de Autómatas Celulares
AC de una dimensión
Autómata celular generado con la regla 30. |
Consideremos el AC definido por la tabla siguiente, que nos da la regla de evolución:
Motivo inicial | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
---|---|---|---|---|---|---|---|---|
Valor siguiente de la célula central | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |